

Long-term correction: Facts and Fiction

Thomas Sørensen, Wiebke Langreder IWTMA April 2017

LT Long-term Correction

Challenges:

Nature: +/- 20% energy variation possible

Man-made: CREYAP 1 (blind test) indicated LT correction as biggest source of deviation between consultants

Why?

A number of choices have to be made:

- 1. LT data source
- 2. MCP (measure-correlate-predict) method
 - Artificial time series: Linear Regression or Matrix Method
 - Scaling: Wind Index (or better said Energy Index)

But there is no guideline how to make a choice!

Common Consideration

Key parameter: Wind Speed Correlation Coefficient R How well does the ST (short-term) data set correlate with LT data?

But:

Improved quality of meso-scale data (temporal and spatial resolution) allows far more sophisticated approaches.

Methodology (1/3)

On-site data:

- 10 sites with 80m measurement masts in Turkey
- All mast IEC compliant
- All anemometer MEASNET calibrated
- All excellent recovery rate 1 year of data

Methodology (2/3)

LT data:

- EMD ConWx
- Vortex
- Merra

MCP Methods (all using default in WindPRO):

- Linear Regression
- Matrix
- Wind Index (which is an energy index)

Methodology (3/3)

Total of 90 results (10 sites, 3 LT data sets, 3 methods) How to compare?

Each LT data set/method results in a LT corrected wind speed

- Correction factor wind speed C_{ws}= WS_{LT}/WS_{ST}
- Correction factor wind energy C_{we}=1+(C_{ws}-1)²

All results have been normalized to the C_{we} from LT data set From 90 results:

- Averages as measure of bias
- Standard deviations as measure of uncertainty

Results (1/3)

How much do the results vary for a specific site?

- Despite high correlation: significant variations
- For a specific site the results from different methods and sources span on average 15%
- All data sets/methods industry accepted

	Deviation from Normalised Energy Correction Factor					
	Average	Min	Max			
10 sites	15%	.7%	31%			

Results (2/3)

Dependency on LT data set and method? Focus "Average" (bias)

- around 6% difference between methods
- Wind Index positive bias Matrix negative bias
- EMD ConWx and Vortex comparable
- Merra: positive bias in all methods

		Deviation from Normalised Energy Correction Factor			
		V/ind Index	Lin. Regression	Matrix	
all LT data	Average	5%	2%	(-1%)	
	Std Dev				
EMD ConWx	Average	5%	0%	-3%	
	Std Dev				
Vortex	Average	4%	1%	-3%	
	Std Dev				
Merra	Average	8%	4%	4%	
	Std Dev				

Results (2/3)

Dependency on LT data set and method? Focus "std dev" (uncertainty)

- No significant difference between methods
- Slightly lower for Vortex for Lin. Regr. and Matrix

		Deviation from Normalised Energy Correction Factor			
		Wind Index	Lin. Regression	Matrix	
all LT data	Average	5%	2%	-1%	
	Std Dev	7%	6%	7%	
EMD ConWx	Average	5%	0%	-3%	
	Std Dev	6%	6%	6%	
Vortex	Average	4%	1%	-3%	
	Std Dev	6%	4%	3%	
Merra	Average	8%	4%	4%	
	Std Dev	9%	7%	7% w.emd.dk	

Reasons (1/2)

1. Wind direction:

- Annual rose hides too much
- Look at monthly level

Monthly energy roses local data

Monthly energy roses reference data concurrent with local data

Reasons (2/2)

- 2. Get the timing right:
- If you generate artificial time series (lin reg or Matrix) check diurnal variations

- There is no "perfect" method.
- Show comparison concurrent energy rose, not only frequency rose or mean wind speed rose of concurrent period
- Go into detail and check if the wind rose is representative (monthly basis), it is important to get it right how much and when it is blowing from what direction
- Check seasonal and diurnal variations
- If artificial time series is generated, do quality control and compare artificially generated energy rose with measured one for concurrent period

EMD International A/S