

closer, committed, competitive

TI influence on Power Curve Measurements

Date: 24.04.2017

Author: Mathias Hölzer

Co-Author: Kodishwaran Suriyanarayanan

ProfEC Ventus GmbH

www.profec-ventus.com

m.hoelzer@profec-ventus.com

ProfEC Ventus Group

- Founded in 2011
- ISO 17025-accredited for IEC and MEASNET conform wind sensor calibrations (Calibration Laboratory) and consultancy (Testing Laboratory)
 - ✓ Accredited wind consulting services since 2014
 - ✓ Anemometer and Wind Vane Calibration since 2015
 - ✓ MEASNET member since 2016
- Mission: supply of bankable wind energy services
- Staff professional expertise in > 30 countries

Deutsche Akkreditierungsstelle GmbH

Entrusted according to Section 8 subsection 1 AkkStelleG in consubsection 1 AkkStelleGBV

Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition

Accreditation

The Deutsche Akkreditierungsstelle GmbH attests that the testing

ProfEC Ventus GmbH Im Ofenerfeld 23, 26127 Oldenburg

at the location:

Marie-Curie-Straße 1, 26129 Oldenburg

is competent under the terms of DIN EN ISO/IEC 17025:2005 to c following fields:

Measurement of Wind Turbine Power Performance; Wind Reso Assessment of Wind Turbines and Wind Farms; Installation and Measurements with Anemometers; Site Classification of Wind 1

The accreditation certificate shall only apply in connection with the notice with the accreditation number D-PL-19142-01 and is valid until 21.01.2020 the reverse side of the cover sheet and the following annex with a total of

Registration number of the certificate: D-PL-19142-01-00

Berlin, 30.01.2015

See notes overless

Dr. Heike Manke Head of Division

Deutsche Akkreditierungsstelle GmbH

Entrusted according to Section 8 subsection 1 AkkStelleG in con subsection 1 AkkStelleGBV

Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition

Accreditation

The Deutsche Akkreditierungsstelle GmbH attests

ProfEC Ventus GmbH Im Ofenerfeld 23, 26127 Oldenburg, Germany

that their calibration laboratory

ProfEC Ventus GmbH Marie-Curie-Straße 1, 26129 Oldenburg, Germany

is competent under the terms of DIN EN ISO/IEC 17025:2005 to c following fields:

Fluid quantities

- Velocity of gases
- Direction of flow

The accreditation certificate shall only apply in connection with the notice with the accreditation number D-K-19142-01 and is valid until 2021-01-17. the reverse side of the cover sheet and the following annex with a total of

Registration number of the certificate: D-K-19142-01-00

Braunschweig, 2016-01-18

See notes overleaf

142-01-00

Dr. Michael Wolf

Head of Division

Executive Chairwoman

Membership Document

The Council of Members confirms that the below listed measurements performed by

Monika Krämer

ProfEC Ventus GmbH

Im Ofenerfeld 23 26127-Oldenburg Germany

fulfil the measurement quality criteria of MEASNET, stated in the respective and actually valid MEASNET Measurement and Quality Evaluation Procedures for

Anemometer Calibration

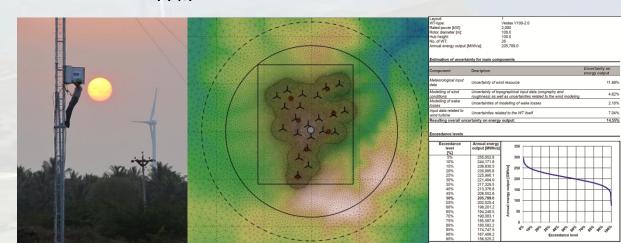
This document consists of 1 page and is valid until 27.06.2021 and only in combination with a valid accreditation to ISO/IEC 17025

Madrid, 27.16.2016

Measuring-Network for Wind Energy

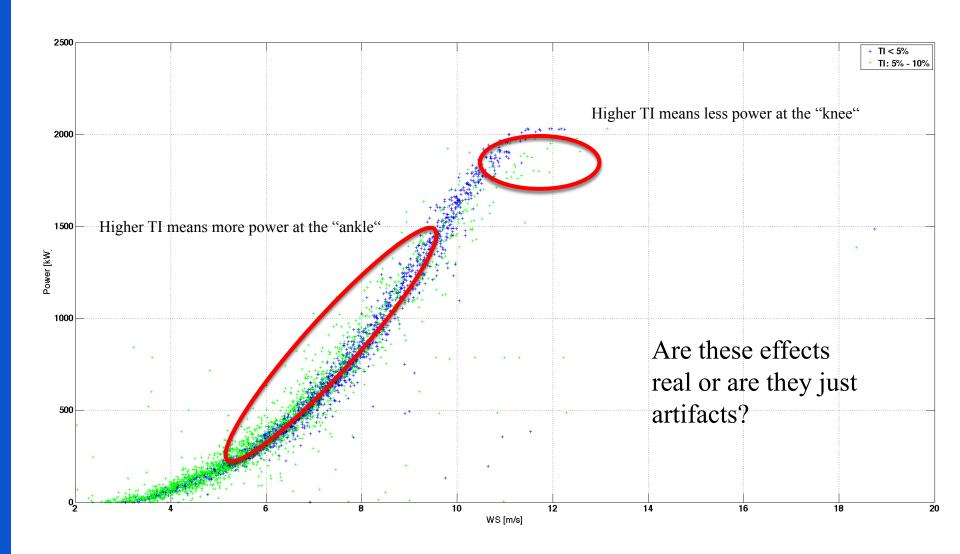
Services

Calibration services



Installation and maintenance of measurement masts

Micrositing


Site Assessment

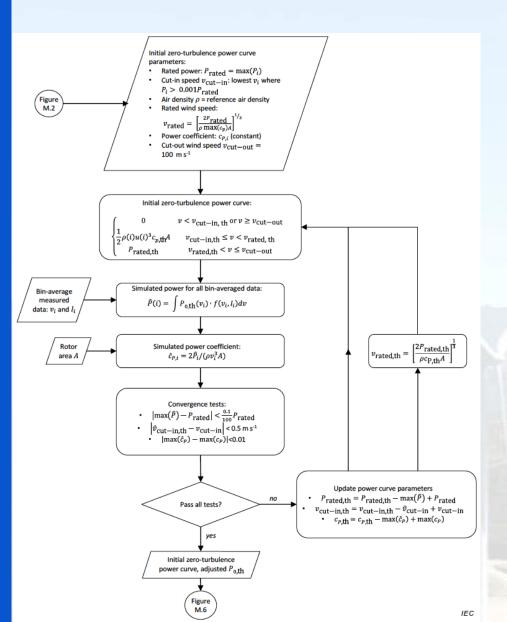
PPM

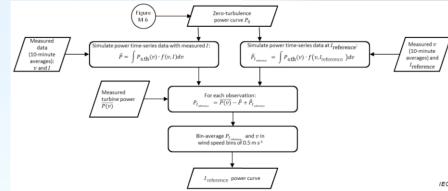
TI dependency of measured WT Power Curves

TI dependency of measured WT Power Curves

Most likely the effects seen on the previous plots are artifacts:

- Measurements per IEC standard compute the 10 min mean of the Wind Speed and Power output
- Turbine control happens on time scales of a few seconds (depending on the event and the manufacturer)
- Dependency between Wind Speed and Power Output is highly non-linear, leading to "side-effects" while calculating the mean in each Wind Speed Bin




IEC 61400-12-1: 2017 TI corrected PPM

- Newly proposed procedure IEC 61400-12-1 standard
- Procedure:
 - Establish a Zero Turbulence Power Curve via an iterative process from the measured PPM data
 - Zero Turbulence Power Curve used to determine Power Curves for different TI levels

Determination and application of Zero-Turbulence Power Curve

IEC 61400-12-1: 2017 TI corrected PPM

Advantage:

- Works quite well in most of the situations
- Method without too much physics in it (advantage?)
- Only informative part of the standard

Disadvantage:

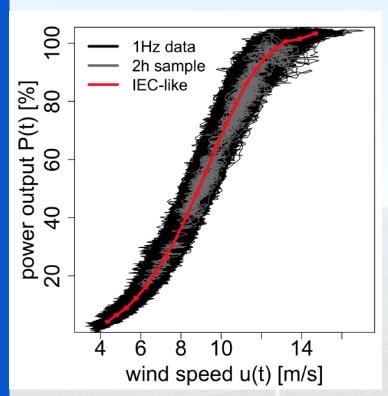
- Complicated procedure
- Questionable procedure
- Only informative part of the standard

Alternatives

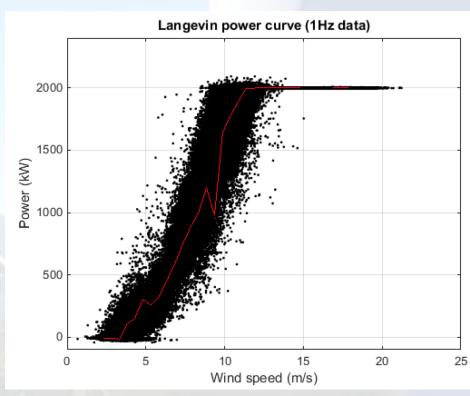
- "Langevin Power Curve"
 - Gives accurate results in most situations
 - Needs high frequency data
 - Easy to understand, difficult to implement
- Statistical method
 - Uses the 10 min data recorded as per IEC standard

Langevin Power Curve - Basics

- Assumption: Markov process
- Dynamics described by Langevin equation:


$$\frac{du}{dt} = D^{(1)}(u) + \sqrt{D^{(2)}(u)} \cdot \Gamma(t)$$

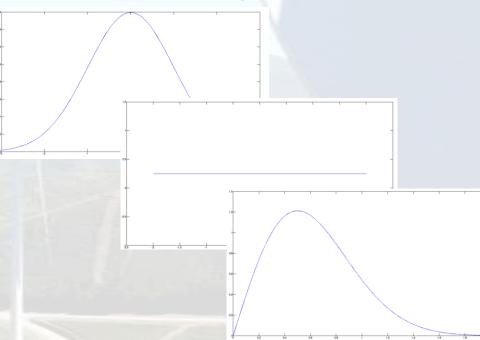
- Drift and Diffusion coefficients (Kramer-Moyal Coefficients) determine the dynamics of the system
- KM coefficients can be determined out of the n-order Moments
- Disadvantage: Continuous high Frequency data needed (faster than 1Hz)



Langevin Power Curve - Results

Might or might not give good results:

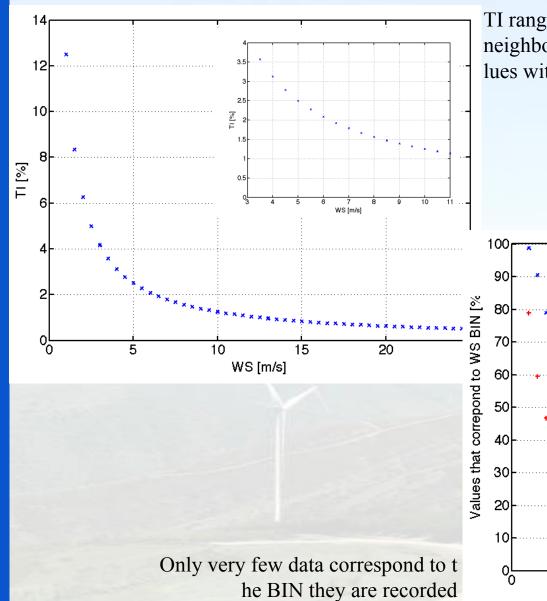
Source: The conversion dynamics of wind energy systems treated as a complex stochastic process, Milan (2014)


Source: Wind Turbine Performance Measurements by Means of Dyna mic Data Analysis, Friis Pedersen (2016)

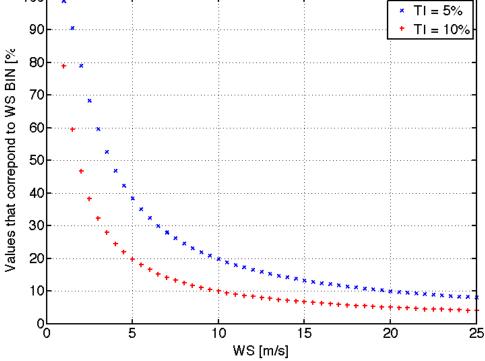
→ Has the potential to be an alternative, but needs further investigation. Not in the IEC standard, thus not yet (?) accepted in the industry.

Simplified statistical approach (1)

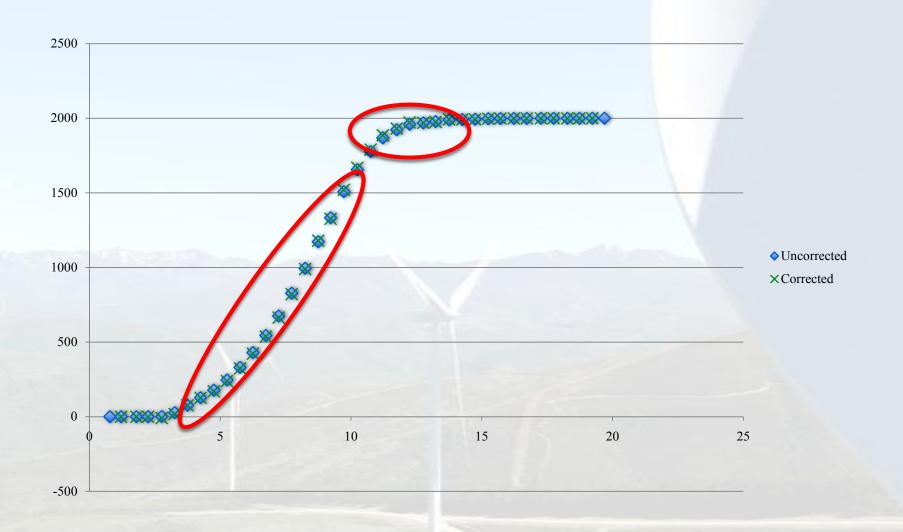
- For IEC measurements we are sticked to the 10 min averaging period
- We do not know what is happening inside the standard IEC 61400-12-1 Wind Speed and Power Signal BIN:
 - Is the distribution Gaussian?
 - Is the distribution Uniform?
 - What about the skewness?



Simplified statistical approach (2)


- Assumptions:
 - Turbulence describes the wind speed change in a given time interval (here: 10 min)
 - Data within the 10 min averaging interval follows Gaussian Distribution
 - The turbine follows the same Power Curve for 0% TI as for higher turbulences up to the limit set by controller and WT dynamics. Effects seen on the Power Curve are only artifacts due to the BIN averaging
 - Shift in Power Curve due to "contamination" of bins with data from neighboring bin

Simplified statistical approach (3)



TI range with little contamination from neighboring BINs is very narrow (example: 95% of values within BIN)

Simplified statistical approach (4)

Method Comparison

IEC Method	Langevin Power Curve	Simplified statistical approach
+ Standard method+ Well documented+ Works with 10 min data	+ Potentially very accurateMethod+ Very fast method	+ Easy to use+ Works with 10 min data
- Difficult to use	 Difficult to use Sensitive to assumptions and settings Non-standard method High-frequency data needed 	- Cannot correct all errors due to 10 min averaging

Thank you very much for your attention

ProfEC Ventus GmbH

www.profec-ventus.com

info@profec-ventus.com